
IOL HAT Software
Application manual

www.pinetek-networks.com

Printed on July 1, 2024

Table of Contents

SW1 – Introduction
SW2 – Master Application
SW3 – Binary protocol
SW3.1 – CMD_PWR
SW3.2 – CMD_LED
SW3.3 – CMD_PD
SW3.4 – CMD_READ
SW3.5 – CMD_WRITE
SW3.6 – CMD_STATUS
SW-Appendix-A – Error messages

SW1 – Introduction

This section describes the methods and procedures that are used in connection with the open source
software for the IOL HAT (“master application”) which is available in the Github repository:
https://github.com/Pinetek-Networks/iol-hat

The software is based on the I-Link stack by RT-Labs. Please note that the software has been proven to
work in different applications, however, it comes without guarantees of specific functions or
functionality.

Information on how to obtain the software and how to build it for specific targets can be found in the
GitHub. The following sections describe the application of the software on the Raspberry Pi or other
Single Board Computers.

Theory of operation

The master application handles the raw communication to the MAX14819 transceiver on the IOL-HAT
over SPI and provides the stack routines to operate the IO-Link communication. The master application
offers a TCP socket interface to the user application for easy integration. The master application and
user application need to be run independantly.

https://github.com/Pinetek-Networks/iol-hat

SW2 – Master Application

To operate the IOL HAT on a Raspberry Pi, the master application binary from the IOL HAT repository is
used:
https://github.com/Pinetek-Networks/iol-hat/bin

The suitable master application file for the used Linux distribution (32bit/64bit) shall be used. The Linux
version can be determined with

uname -a

If the Linux distribution is not available as binary, please refer to the building instructrions on the
GitHub page to compile a matching version: https://github.com/Pinetek-Networks/iol-
hat/tree/main/src-master-application

The settings how to operate the application are described on the GitHub page.


To operate two IOL HATs on one Raspberry Pi, two instances of the master
application need to be executed. Only run one instance of the same master
application at once, otherwise the behavior will be undefined.

SPI communication needs to be enabled on the host. For Raspberry Pi, this can be set using the raspi
config tool:

sudo raspi-config

Upload the master application to the Raspberry Pi and run it. The master application will open a TCP
server on the following ports:

SDCI 1+2: Port 14001
SDCI 3+4: Port 14002

The client can connect to those ports and communicate through the binary prototcol as described below.


The TCP connection is established for each communication with the master
application, i.e., the connection is not kept open.

https://github.com/Pinetek-Networks/iol-hat/bin
https://github.com/Pinetek-Networks/iol-hat/tree/main/src-master-application
https://github.com/Pinetek-Networks/iol-hat/tree/main/src-master-application

SW3 – Binary protocol

The sequence for communication over TCP is as follows:

The commands and responses are exchanged in the send() and receive() part of the sequence. The first
octet in the command structure always defines the command ID.


Some commands use a port ID. This refers to the first or second port on the IOL
HAT. Which IOL HAT is addressed is determined through the TCP port. Port ID 1 can
refer to IOL HAT port 1 or 3, Port ID 2 to IOL HAT port 2 or 4, depending if TCP port
14001 or 14002 is used.

The commands have a common structure in the first two octets:

Octet # Usage

0 Command ID

1 Length

In case of a command success, the return message as described in the commands is returned by the
TCP server.

Error handling

In case of an error, the error message is returned:

Octet # Usage

0 Error message ID = 0xFF

1 Error code

The following error codes are defined:

Error code Usage

0x01 Message Length Error

0x02 Function ID unknown

0x03 Port power error, e.g. read while port disabled

0x04 Port ID error, i.e. port ID >2 called

0x05 Internal error, in this case octets 2..3 define the
specific error code from the I-Link stack

0x06 Wrong status, e.g. data exchange when power off
or no connection to the device

The error codes are listed in the appendix SW-Apendix-A.

SW3.1 – CMD_PWR

The power command switches the L+ power on the corresponding port. After switching on, the
communication speed on the SDCI (COM1, COM2, COM3) is automatically detected and cyclic exchange
of data is started.

Command:

Octet # Usage

0 Command ID = 0x01

1 Port ID 0x00 or 0x01

3
Power status
0x00 = OFF

0x01..0xFF=ON

Return Success:

Octet # Usage

0 Command ID = 0x01

1 Port ID 0x01 or 0x02

3 Power Status

SW3.2 – CMD_LED

The LED command switches the LED on the corresponding port.

Command:

Octet # Usage

0 Command ID = 0x02

1 Port ID 0x00 or 0x01

3 LED Status (see
below)

The LED status is 0x01 for the green LED and
0x02 for the red LED. With LED status 0x03, both
LEDs are activated.

Return Success:

Octet # Usage

0 Command ID = 0x02

1 Port ID 0x01 or 0x02

3 LED Status

SW3.3 – CMD_PD

This command exchanges the process data with the connected device. Process data is not validated in
length or content.

Command:

Octet # Usage

0 Command ID = 0x03

1 Port ID 0x00 or 0x01

2 Length Out

3 Length In

4.. Data Out

The Length Out field command is length for the
output process data. The structure and length of
the output data can be found in the SDCI device’s
documentation. The Length In field needs to be
set according to the device’s documentation. If
the length fields are not correctly set, this may
lead to invalid data or loss of communication.

Return Success:

Octet # Usage

0 Command ID = 0x03

1 Port ID 0x01 or 0x02

2 Length Out (as given
in the command)

3 Length In (as given in
the command)

4.. Data In

SW3.4 – CMD_READ

This command reads a parameter with the index and subindex as given on the corresponding port.

Command:

Octet # Usage

0 Command ID = 0x04

1 Port ID 0x00 or 0x01

2..3 Index, 16-bit value

4 Subindex

5 Length

The Length field is the desired/maximum length
for the attribute. The structure of the attribute
can be found in the SDCI device’s documentation.

Return Success:

Octet # Usage

0 Command ID = 0x0

1 Port ID 0x01 or 0x02

2..3 Index, 16-bit value

4 Subindex

5 Read Length

6.. Read Data

The structure for the Read Data can be found in
the SDCI device’s documentation.

SW3.5 – CMD_WRITE

This command writes a parameter with the index and subindex as given on the addressed port.

Command:

Octet # Usage

0 Command ID = 0x05

1 Port ID 0x00 or 0x01

2..3 Index, 16-bit value

4 Subindex

5 Length

6.. Write Data

The structure of the Write Data can be found in
the SDCI device’s documentation.

Return Success:

Octet # Usage

0 Command ID = 0x04

1 Port ID 0x01 or 0x02

2..3 Index, 16-bit value

4 Subindex

5 Length (as given in
the command)

To verify the write operation, a read operation
(Command ID 0x04) can be used on the same
Index and Subindex.

SW3.6 – CMD_STATUS

The status command returns the status of the addressed port.

Command:

Octet # Usage

0 Command ID = 0x06

1 Port ID 0x01 or 0x02

Return Success:

Octet # Usage Comment

0 Command ID = 0x06

1 Port ID 0x00 or 0x01

2 Process data IN valid
0x00 = Not valid 0x01 = Valid

3 Process data OUT valid

4 Transmission rate

0x00 = Detection Failure 0x01
= COM1 (4.8 kbps) 0x02 =
COM2 (38.4 kbps) 0x03 =

COM3 (230.4 kpbs)

5 Process data IN length

6 Cycle time

7 Process data OUT length

8..9 Vendor ID 16-bit value

10..13 Device ID 32-bit value

14 Power 0x00 = Power OFF 0x01 =
Power ON

SW-Appendix-A – Error messages

The following extended Error Messages are defined (see iolink.h in application source code):

 IOLINK_SMI_ERRORTYPE_NONE = 0x0000,

 /* Table C.1 ErrorTypes */
 IOLINK_SMI_ERRORTYPE_APP_DEV = 0x8000,
 IOLINK_SMI_ERRORTYPE_IDX_NOTAVAIL = 0x8011,
 IOLINK_SMI_ERRORTYPE_SUBIDX_NOTAVAIL = 0x8012,
 IOLINK_SMI_ERRORTYPE_SERV_NOTAVAIL = 0x8020,
 IOLINK_SMI_ERRORTYPE_SERV_NOTAVAIL_LOCCTRL = 0x8021,
 IOLINK_SMI_ERRORTYPE_SERV_NOTAVAIL_DEVCTRL = 0x8022,
 IOLINK_SMI_ERRORTYPE_IDX_NOT_ACCESSIBLE = 0x8023,
 IOLINK_SMI_ERRORTYPE_PAR_VALOUTOFRNG = 0x8030,
 IOLINK_SMI_ERRORTYPE_PAR_VALGTLIM = 0x8031,
 IOLINK_SMI_ERRORTYPE_PAR_VALLTLIM = 0x8032,
 IOLINK_SMI_ERRORTYPE_VAL_LENOVRRUN = 0x8033, /* Also in C.2 */
 IOLINK_SMI_ERRORTYPE_VAL_LENUNDRUN = 0x8034,
 IOLINK_SMI_ERRORTYPE_FUNC_NOTAVAIL = 0x8035,
 IOLINK_SMI_ERRORTYPE_FUNC_UNAVAILTEMP = 0x8036,
 IOLINK_SMI_ERRORTYPE_PAR_SETINVALID = 0x8040,
 IOLINK_SMI_ERRORTYPE_PAR_SETINCONSIST = 0x8041,
 IOLINK_SMI_ERRORTYPE_APP_DEVNOTRDY = 0x8082,
 IOLINK_SMI_ERRORTYPE_UNSPECIFIC = 0x8100,

 /* Table C.2 Derivced ErrorTypes */
 IOLINK_SMI_ERRORTYPE_COM_ERR = 0x1000,
 IOLINK_SMI_ERRORTYPE_I_SERVICE_TIMEOUT = 0x1100,
 IOLINK_SMI_ERRORTYPE_M_ISDU_CHECKSUM = 0x5600,
 IOLINK_SMI_ERRORTYPE_M_ISDU_ILLEGAL = 0x5700,

 /* Table C.3 SMI related ErrorTypes */
 IOLINK_SMI_ERRORTYPE_ARGBLOCK_NOT_SUPPORTED = 0x4001,
 IOLINK_SMI_ERRORTYPE_ARGBLOCK_INCONSISTENT = 0x4002,
 IOLINK_SMI_ERRORTYPE_DEV_NOT_ACCESSIBLE = 0x4003,
 IOLINK_SMI_ERRORTYPE_SERVICE_NOT_SUPPORTED = 0x4004,
 IOLINK_SMI_ERRORTYPE_DEV_NOT_IN_OPERATE = 0x4005,
 IOLINK_SMI_ERRORTYPE_MEMORY_OVERRUN = 0x4006,
 IOLINK_SMI_ERRORTYPE_PORT_NUM_INVALID = 0x4011,
 IOLINK_SMI_ERRORTYPE_ARGBLOCK_LENGTH_INVALID = 0x4034,
 IOLINK_SMI_ERRORTYPE_SERVICE_TEMP_UNAVAILABLE = 0x4036,

